If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-(1)/(2)x^2+1=-39
We move all terms to the left:
-(1)/(2)x^2+1-(-39)=0
Domain of the equation: 2x^2!=0We add all the numbers together, and all the variables
x^2!=0/2
x^2!=√0
x!=0
x∈R
-1/2x^2+40=0
We multiply all the terms by the denominator
40*2x^2-1=0
Wy multiply elements
80x^2-1=0
a = 80; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·80·(-1)
Δ = 320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{320}=\sqrt{64*5}=\sqrt{64}*\sqrt{5}=8\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{5}}{2*80}=\frac{0-8\sqrt{5}}{160} =-\frac{8\sqrt{5}}{160} =-\frac{\sqrt{5}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{5}}{2*80}=\frac{0+8\sqrt{5}}{160} =\frac{8\sqrt{5}}{160} =\frac{\sqrt{5}}{20} $
| 2x-4÷5=8 | | 2(x=1)=5(x-2) | | 74+9x+5=180 | | -16=8(y-8)+8y | | 5a=21a+2a | | 800x+4=10 | | -5=y(2y-11) | | 3x-(2x+1)=8 | | 0=4+5x | | 8(x-3)=2(6x-3) | | 5x-3=2(x=3) | | -6v-4.1v=-7.07 | | -16=3x+5=20 | | x^2-100x-1400=0 | | -3/4x+12=0 | | 3x-3/2=3/2 | | 1/5(15m-7)=3m-9 | | .8x=90 | | 0.3(15)+0.05x=0.2(15) | | (2x)=(3x-10) | | ^4-3a^2-4=0 | | 5x+6=2(2x–3 | | 4y-14=14y= | | 2x/7=(x-1)/3 | | 3c^2-21c-90=0 | | 22.75÷w=-3.5 | | -14=3x-12 | | 6x+8=-10x= | | 4x+8=10x-2(3x-4 | | 4(3c+7)=2c-8 | | -x-2=-11 | | (0.08)x+0.18(3)=0.12(x+3) |